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Abstract—The interfacial area concentration 1s one of the most important parameters in analyzing
two-phase flow based on the two-fluid model. The local instantaneous formulation of the interfacial
area concentration 1s introduced here. Based on this formulation, time and spatial averaged interfacial
area concentrations are derived, and the local ergodic theorem (the equivalency of the time and
spatial averaged values) 1s obtamed for stationary developed two-phase flow. On the other hand,
the global ergodic theorem 1s derived for general two-phase flow. Measurement methods are discussed
in detail in relation to the present analysis. The three-probe method, with which local interfacial
area concentration can be measured accurately, has been proposed. The one-probe method under
some statistical assumptions has also been proposed. In collaboration with the experimental data
for the interfacial velocity, radial profiles of the local interfacial area concentration are obtamned
based on the one-probe method. The result indicates that the local interfacial area concentration
has a peak value near the tube wall in bubbly flow. This 1s consistent with the near wall peak of
local voud fraction separately observed. In slug flow 1t shows a higher value 1 the central region
of the tube for that particular set of data

1. INTRODUCTION

In order to analyze the thermal hydraulics of two-phase flow, various formulations such
as the homogeneous flow model, drift-flux model (Zuber & Findley 1965; Wallis 1969; Ishii
1977), and two-fluid model have been proposed (Ishii 1975; Delhaye 1968). Among these
models, the two-fluid formulation can be considered the most accurate model because of
its detailed treatment of the phase interactions at the interface. The two-fluid model is
formulated by considering each phase separately in terms of two sets of conservation
equations which govern the balance of mass, momentum, and energy of each phase. These
balance equations represent the macroscopic fields of each phase and are obtained from
proper averaging methods. Since the macroscopic fields of each phase are not independent
of the other phase, the phase interaction terms which couple the transport of mass, mo-
mentum, and energy of each phase appear in the field equations. It is expected that the
two-fluid model can predict mechanical and thermal nonequilibrium between phases ac-
curately. However, it is noted that the interfacial transfer terms should be modeled accurately
for the two-fluid model to be useful. In the present state of the art, the constitutive equations
for these interfacial terms are the weakest link in the two-fluid model. The difficulties arise
due to the complicated transfer mechanisms at the interfaces coupled with the motion and
geometry of the interfaces. Furthermore, the constitutive equations should be modeled by
macroscopic variables based on proper averaging. A three-dimensional two-fluid model has
been obtained by using temporal or statistical averaging (Ishii 1975). For most practical
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applications, the model developed by Ishii (1975) can be simplified to the following forms

Continuity equation

iaa
aktpk + v (akpkvk) = Fk, l“

Momentum equation

0, PiVy

I + 7+ (apavivie)

= -a,VPx + Voo (P + 74) + aypeg + v lu + My — Vo, o7, [2]
Enthalpy energy equation

aakpka

Iy -+ V-(akpkavk)

- D, ]
:“V’ak(qk+q;()+akDpk+Hk,rk+i_k‘+‘q)k [3]

Here [',,M,, 7,,q,,and ®, are the mass generation, generalized interfacial drag, interfacial
shear stress, interfacial heat flux, and dissipation, respectively. The subscript k denotes &
phase, and / stands for the value at the interface. a,, pi» V4> px» and H, denote the void
fraction, density, velocity, pressure and enthalpy of k phase, whereas 7 To T v g q. and g
stand for average viscous stress, turbulent stress, mean conduction heat flux, turbulent heat
flux and acceleration due to gravity. H,, is the enthalpy of X phase at the interface; thus
1t may be assumed to be the saturation enthalpy for most cases. L; denotes the length scale
at the interface, and 1/L has the physical meaning of the interfacial area per unit volume
a, (Ishii 1975). Thus.

Interfacial area

=a = ——.
' Mixture volume

1
— 4
3 4]

The above field equations indicate that several interfacial transfer terms appear on the
right-hand sides of the equations. Since these interfacial transfer terms also should obey
the balance laws at the interface, interfacial transfer conditions could be obtained from an
average of the local jump conditions (Ishii 1975). They are given by

El“kzo,
k

EM:I( =0, (5]
Gk
I'.Hd —=]=0.
. ( k ki +Lg)

Therefore, constitutive equations for M 4, g4, /L, and q ' | L, are necessary for the interfacial
transfer terms. The enthalpy interfacial transfer condition indicates that specifying the heat
flux at the interface for both phases is equivalent to the constitutive relation for I', if the
mechanical-energy transfer terms can be neglected (Ishii 1975). This aspect greatly simplifies
the development of the constitutive relations for interfacial transfer terms.

By introducing the mean mass transfer per unit area, m,, defined by

rh=am,, {6}
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the interfacial energy-transfer term in [3] can be rewritten as

1
T.H, + f’Li = a,(m Hy, + ql). [7]

The heat flux at the interface should be modeled using the driving force or the potential
for an energy transfer. Thus,

gk = ho(T, - T)), [8]

where T, and T, are the interfacial and bulk temperatures based on the mean enthalpy
and A, is the interfacial heat transfer coefficient. A similar treatment of the interfacial
momentum transfer term is also possible (Ishii & Mishima 1980). In view of the above, the
importance of the interfacial area a,, in developing a constitutive relation for this term is
evident. The interfacial transfer terms are now expressed as a product of the interfacial area
and the driving force. It is essential to make a conceptual distinction between the effects
of these two parameters. The interfacial transfer of mass, momentum, and energy increases
with an interfacial area concentration toward the mechanical and thermal equilibrium.
Thus, in general, the interfacial transfer terms are given in terms of the interfacial area
concentration a, and driving force (Ishii 1975; Ishii & Mishima 1980; Ishii er al 1982) as

(Interfacial transfer term) ~ a, X (Driving force) . (9]

The area concentration defined as the interfacial area per unit volume of the mixture
characterizes the first-order geometrical effects; therefore, it must be related to the structure
of the two-phase flow field. On the other hand, the driving forces for the interfacial transport
characterize the local transport mechanisms such as the turbulent and molecular diffusions.

In two-phase flow systems, the void fraction and interfacial area concentration are two
of the most important geometrical parameters. The void fraction is treated as a variable to
be solved from a set of balance equations, whereas the interfacial area concentration should
be specified by a constitutive relation or by introducing an additional transport equation
for a, (Ishii 1975; Ishii & Mishima 1980). As the above formulation indicates, the knowledge
of the interfacial area concentration is indispensable in the two-fluid model.

Although a number of studies have been made in this area, the interfacial area con-
centration in two-phase flow has not been sufficiently investigated both experimentally and
analytically. Most of the previous studies are for steady-state flow without phase change.
Auvailable experimental data are limited to volume-averaged interfacial area concentration
over a section of a flow channel. Detailed review of these are given in references (Ishii &
Mishima 1980) to (Kocamustafaogullari & Ishii 1983). There are a number of shortcomings
in measurement techniques. Furthermore, there are very few established theoretical foun-
dations for relating this interfacial area to some easily measurable quantities. In particular,
there seems to be no information available on a local value of the interfacial area concen-
tration. However, this local interfacial area concentration is very important for two- or
three-dimensional analyses using the two-fluid model.

There is one problem dealing with the definition of the interfacial area concentration
locally and instantaneously. Since the Lebesque measure of an interface is zero, the local
instantaneous interfacial area concentration cannot be represented by an ordinary function
(Schwartz 1950; 1951; 1961). To avoid this problem, an integral method has been used in
the analysis of the interfacial area (Ishii 1975; Delhaye 1968). However, by introducing a
distribution which is a generalized function (Schwartz 1950; 1951; 1961), one can express
the local instantaneous interfacial area concentration.

Based on this local instantaneous formulation and the assumptions of the statistical
characteristics of two-phase flow, fundamental relations for the interfacial area concentration
have been derived. These equations relate the local value of the interfacial area to observable
parameters of the two-phase flow. Based on this theory, some measurement techniques of
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the local interfacial area concentration have been proposed. Finally, using the existing
experimental data on flow measurements, radial profiles of the local interfacial concentration
have been obtained.

2 LOCAL INSTANTANEOUS INTERFACIAL AREA CONCENTRATION

By considering a simple system shown in figure 1, where there 1s only one gas—liquid
interface, the location of the interface x, is represented in an x coordinate as

X = Xgq [10]

Now a control volume near the point v is defined by

1 1
Y- 58X Sx <y + JAx, [11]

where Ax is the size of the control volume. Then the spatial-averaged interfacial area
concentration @’ in the control volume 1s given by

2 (12]

By taking the limit of Ax — O, the local interfacial area concentration a,(x) in a one-
dimensional form is given by

a(x) = 8(x - x,). (13]

Here 8(x - x,) is the delta function (Dirac 1958; Schwartz 1961) which satisfies
f_ 8x - xo)dx =1, 8(x - x,) = 0forx £ x,. [14]

One of the special characteristics of the delta function 1s that for any smooth function ¢(x)
it gives

J‘i 8(x - xo) d(x)dx = d(x,) . [15]
Y 1 | ' L/!Interface
l | !Ax Ax!
K
of | ! %ol x
o]
ool
I=xo

Figure 1 Local interfacial area concentration in one dimension
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This result can be extended to any gas-liquid interface in a three-dimensional space. By
considering a moving gas-liquid interface which is smooth and represented by

fGxyzt) =0, [16]

the local instantaneous interacial area concentration a, is given by

a,(xyzt) = lgrad f| 8(f(x,y,z1)), [17]
where |[grad f| is defined as
lgrad f| = Vgrad f.grad f = \/(i'i)2 + (i)2 + (ﬂ‘)z [18]
ax ay 3z)

In bubbly or droplet flow, the gas-liquid interface is composed of many separate
surfaces of bubbles or droplets. For this case, the surface of the jth bubble or droplet is
represented by

Sixyzt) =0. [19]

Then the local instantaneous interfacial area concentration is given by
alopzn) = 2 grad £)8(FGepan) . [20]
J

The above analysis shows that the local instantaneous formulations of interfacial area
concentration can be obtained in terms of a distribution, as in [20]. This formulation is
valid for any flow regime of two-phase flow.

Since the distribution 8(x — x,) is not observable experimentally, it is necessary to
apply appropriate averaging of [17] or [20] to obtain a measurable representation of the
interfacial area concentration. Time and spatial averaging will be discussed in this relation
in the next section.

A. Spatial averaging of interfacial area

In general, there are three types of spatial averaging of a,(x,5.z), which are linear,
surface, and volume averaging.

Now, in view of its practical importance for the present study, the linear averaging
a’” along the z axis is discussed in detail. For fixed x,, y,, and t,, the spatial average of
[20] over length L is given by

1
aP‘ (xo,}’o.to) ZJ‘ a (xO,yoyz,to)dz [21]
1
LT rnd £ 8 ruetoe
/
By defining z, as the value which satisfies
f,(xoyyo;zpto) =0, [22]

[21] can be rewritten as

— 1
ar (xo0¥0t0) =z

igrad f;|/ 'a—f‘“ [23]
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Here the night-hand side 1s calculated at (xo,yo,Z,,to) and for jth interface satisfying
z <z, <z + L. By denoting the angle between the z axis and the direction of the ;th
surface normal vector at (x,,y,.2,.20) as 8, (see figure 2), it can be shown that

cos 8, = H:fz /igrad f,| . {24]
Therefore, [23] becomes
<)
_ 1 2 1 2 1 /(2)
Z = - =
@ xowporto) L cos® L (Tcos 6\’ (25]

where (2) denotes the number of interfaces within the domam. Here ; 1s arranged such
7

that z, is in increasing order,
Z <z, <z, <z, m<z+L {26]

Furthermore, it 1s assumed that the following uniformity of the two-phase flow exists in
the z direction for a reasonably large number of samples, where / is the average distance
between interfaces in the z direction:

. 1
,1,1}2 2+ 1 /;n ‘ZJ—H - Z]| =1 [27]

Then it can be shown that for large L,

(2

J

) _L 28
Substituting [28] into [25], one finally obtamns
1 1

at (orporto) = Icos 6°

(29]

Here (1/cos 6) is the reciprocal of a harmonic mean of cos 8, given by

]

1

cos 6
z direction
\
9; ZaN
\\

N

jth interface
Figure 2 Angle between n, (z direction) and n,
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On the other hand, by denoting the number of bubbles or droplets per unit length of
z axis by N,, / can be given by

1

I = .
2N,

(31]

Here the factor 2 indicates that bubble or droplet has two interfaces (upper and lower) in
the z direction. Then [29] can be rewritten as

1

a” (xgpoite) = 2N, ——.
aft (ooto) cos @

(32]

Equation [32] implies that the interfacial area concentration can be obtained by measuring
the number of bubbles or droplets per unit length and the harmonic average of cos 6, along
z direction.

B. Time averaging of interfacial area
For fixed x4, y,, and z,, the time averaging of [20] over interval () is given in terms
of the time-averaged area concentration 2! as

a; (xo’)’o’zo) =

1+ +0
éf a (o yonzont)dt = %M grad £)5(f)dr.  [33]

Now ¢, is defined as the time which satisfies

JixoyoZzort;)) = 0. [34]

2 lgrad f,VH

which applies for j satisfying r < ¢, <t + Q.

By defining ¢, as the angle between the velocity of the jth interface, v,, and the
direction of the surface normal vector at (x,y0.2¢,2,) (see figure 3), the following relation
can be obtained.

Then {33) can be rewritten as

a! (xg.y0:20) = [35]

1
(_i at (xo,_}’o»zort )

1
Igrad f]I/H |V,jk:05 4)] [36]

Substituting [36] into [35], one gets

a! (xo,p0:20) = 12 E )(2;)/(2]:)] [37]

J ‘V,]}COS ¢J 0 J f'u'COS ¢j

jth interface
Figure 3. Angle between v, and n,.
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for all j satisfying ¢ < t; < ¢t + (1. The above result has been obtained also by Ishii (1975)
and Delhaye (1976; 1980) using the integral method.
Now j is rearranged so that 7, 1s 1n increasing order as

<Ly S < <,y S |38]

Then by assuming the following uniformity of the time intervals with mean value 7

1 (
T 1j;n frwr =l =7 [39)

one obtains the following relation for large (1,
4)
5)-0 "

Substituting [40] into [37] yields

— i
a; (xov}’o»zo) = e [41]

1
T Ivjcos ¢

Here the reciprocal of a harmonic mean of v fcos ¢, 1s given by

SR S, ) ”

vios ¢ T Iv,os &,

Now if the number of bubbles or droplets which pass the point (x,,y¢.2,) per umt
time is denoted by N,, then 7 can be given by

[43]

T =

1
2N,
Here the factor 2 indicates that one bubble or droplet passing (x,,y4.z;) has two interfaces
associated with it. Thus, [41] can be rewritten as

1

2N, Vios & (44]

a! (xg.y0:20) =

This equation indicates that the time-averaged interfacial area concentration can be obtained
by counting &, and knowing |v,lcos ¢, for each interface.
If one assumes that 1/jv,| and 1/cos ¢, have no correlation, one obtains

1

a; (xovJ’o»Zo) = : fV:| . cos & ’ [45]
where
1313 45
W/! B 2""]' 2 [ ]
and

3 _L3). [47)
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C. Ergodic hypothesis of interfacial area concentration

In the previous sections, spatial and time averaging of the interfacial area concentration
has been discussed. However, there is one interesting and particularly important problem
to consider. This is related to the ergodic hypothesis. It is essential to know under what
conditions the time and spatial averages coincide. A general answer to this problem is quite
difficult to obtain and beyond the scope of this paper. However, for stationary and developed
two-phase flow this ergodic hypothesis can be demonstrated as shown below.

First, the integration of a,(x,,2,¢) in volume domain ¥ and time domain 2 is considered.
This is denoted by I(V,Q) and given by

nw,n = J‘J‘fj‘y.na,(x,y,z,t)dx dy dz dr. [48]

This integral represents the total area of interface in the volume domain ¥ and over the
time interval ). The sequential integration in time domain ) and volume ¥ coincides with
I( V)Q); thuS,

I,

The average value of the interfacial area concentration can be obtained by dividing [49] by
V. Then, in view of [33], [49] can be rewritten as

dx dy dz =J:l fffya,(x.y,zt)dx dy dz

J; a (x.pzt)dt dr. [49]

= -3, [50]

where operator—p3 denotes volume averaging. This shows that the volume average of the
time-averaged local interfacial area concentration is identical to the time average of the
volume-averaged concentration. This result is similar to that which Delhaye has proved
based on the integral method using the Leibnitz rule (Delhaye 1976; 1980). Equation [50]
might be called the overall ergodic theorem. Although [50] does not require any statistical
assumptions on the characteristic of two-phase flow, its validity is limited to finite volume
and time domains. However, this theorem shows a very important relationship between the
time and spatial averages. The ergodic theorem indicates that these two averages are con-
sistent and they represent fundamentally similar physical quantities. It is shown below that
by introducing some additional conditions, one can obtain the ergodic theorem which is
valid locally.

The integration of a,(x,),z¢) in the domain of z from z to z + L and ¢ from ¢ to
t + Q is defined by

I, = fJ;.n a,(xyzt)dz dt. [51]

This integral has an important physical meaning because it represents the area of interface
in the domain from z to z + L and from ¢ to ¢ + ). Now by changing the sequence of
integrations,

J’1+L

Z

t+0
_[ a,(xyzt)dr dr. [52]

i — J:r+n lj:zu. 6 e pn iz

Thus, by dividing [52] by L) one obtains

z+L t+0
H wesl”

2+ L
5 f a/(x:y)z) t)dz

1J‘:+n
av, a,(x,y.zt)dt 7

dr. [53]
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The above equation 1s a special case of the general ergodic theorem for the interfacial
area concentration given by [50]. An ergodic theorem applicable to the iocal interfacial area
concentration can be obtained by considering stationary and developed two-phase flow
For this type of two-phase flow, appropnately averaged two-phase flow parameters are
independent of time and axial location. By applying these characteristics to the interfacial
area concentration, the following results can be obtained:

1 1411
a = ﬁf a(xpzt)dt = A(x,y) {54]
and
1 z+ L
ar = Zf a,(xyzt)dz = B(x,y), [35]

where z 1s the direction of flow. By substituting [54] and [55] into [53] and integrating it,
it can be shown that

1 z+ L 1 t+0
3 f Ax,y)dz = a J: B(x,y)dr . (56]

This can be satisfied for arbitrary values of x and y only if

Alxy) = B(x,y) . [57]
Therefore, for stationary and developed two-phase flow, the linear averaging @~ and the
time averaging @, become identical when the linear averaging is taken along the flow
direction. Thus,

a# = g! (for stationary and developed flow) . [58]

In comparison with the general ergodic theorem given by {50}, [58] can be called the local
ergodic theorem. From [29] and [41] this ergodic theorem can be modified to

11
cos 8 Tivos ¢

1
7 [59]

The local ergodic theorem given by [58] is quite important in terms of practical applications.
This 1s because the theorem indicates that the line-averaged interfacial area concentration
can be obtained from the time-averaged local interfacial area concentration. The latter can
be related to measurable quantities in a two-phase flow system. For example, the time-
averaged local interfacial area concentration can be measured from the number of bubbles
or drops and the interfacial velocity as shown in [44].

3 METHOD OF MEASUREMENT OF LOCAL INTERFACIAL AREA CONCENTRATION

As discussed in the preceding sections, there are two possible methods for measuring
the local interfacial area concentration. The first approach is to use the principle indicated
by [32]. Equations [30] and [31] show that one has to measure the number of bubbles or
droplets and a direction cosine of a normal vector of each interface in the sufficiently large
z axis distance between z and z + L. For this, it is necessary to use a sensor which scans
distance L in a negligible time duration. In other words, the sensor velocity must be much
larger than the velocity of interfaces. An optical technique such as a photographic method
may be applied for this purpose. An attempt has been made based on this method (Veteau
1981). However, at present, this approach has a limited success only for very low void
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fraction two-phase flow. At higher void fraction, the light scattering and refraction at
multiple interfaces become a very serious problem. Due to these difficulties in the experi-
mental technique, a complete measurement of the local interfacial area concentration based
on [30]-[32] has not been accomplished yet. In relation to the optical technique, there is
a light attenuation method which is based on a different measuring principle. Several attempts
have been made using this method (Veteau & Charlot 1981; Trice & Rodger 1956; Ohba
1978).

Another approach is to use a principle indicated by [44]. In view of [42] and [43], this
method requires a sensor located in a fixed point in two-phase flow and being capable of
measuring the number of bubbles or droplets, their interfacial velocity and the angle between
the interfacial velocity and normal vector of the interface. For this purpose, an electrical
resistivity probe, optical probe, and anemometer which are often used in two-phase flow
measurements (Hewitt 1976; Banerjee & Lahey 1981) may be suitable. In what follows, the
measurement using an electrical resistivity probe will be discussed in detail.

Figure 4 schematically shows a double-sensored electrical resistivity probe. Sensors 1
and 2 detect gas and liquid phase by means of the difference between gas and liquid electrical
resistivity. Therefore, from the electrical signals out of these sensors, a gas-liquid interface
can be detected. Therefore, using these sensors, the number of interfaces passing the probe
per unit time N, can be measured. Furthermore, by measuring the time difference for an
interface to pass sensors 1 and 2, the velocity of interface passing the probe can be measured.

Now consider a unit vector n, with direction the same as that of a double-sensored
probe (figure 4). Its direction cosines are represented by (cos 7,, cos 7,, cos 1,). The
position of sensor 1 is given by (x,,90,2,); then the position of sensor 2 is given by (x, +
As cos m,, yo + As cos 7,, 2, + As cos 7,). By considering the jth interface passing
the sensors 1 and 2, with the passing velocity of v, and the time interval of Az,, the following
relation exists:

As
v,I=A—tj‘. [60]

Since the jth surface is represented by [19], the surface equation should satisfy

S xopoiZoit)) =0, [61]
f, o + As cos m,, po + As cos m,, 2, + As cos M, ¢, + A1) =0, [62]

where ¢, is the time when the jth interface passes the sensor 1. When As is small, [61] and
{62] give the approximate relation

af af, af o,
=L =L hc ¥ = - 2 . 63
xS0 = + - cos m, + 22 S0 M= ot Vo [63]

Double Sensored Probe

Se\'\"°( z

o
A ¢ ensof '

} th Interface

Figure 4. Double-sensored probe and jth interface



516 i KATAOKA er al

Equation [63] indicates that it 1s possible to calculate the value given by [36] by using three
double-sensored probes with a common sensor. It is schematically shown in figure 5. The
unit vector and its direction cosines for probe k are represented by n, and (cos 7.
COS 7,4, €OS M) With k = 1, 2, 3. The passing velocity of the jth interface over probe &
1s denoted by v,

The directions of three probes can be made independent, which implies that the de-
terminant |4 | should satisfy

‘cos Nx1> COS 7,5 COS Ny
|Ao| = |cOS 7,3, COS 7,3, COS 7| F 0. [64]
[COS My3s COS 7,35 COS 7,3

Under this condition [63] has a solution. From this solution it can be shown that

. o, VAP + 45 + 442
(|V,}fCOS d)j) = \/IA—IZ ’ [65]

where |4}, |[4,} and |4,| are given by

1, cos m,;, cos M,
1, cos m,,, cos M,
1, cos 7,3, COS N3

4| =—

51y

[66]

|
0S M1 1, COS My
0S .2, 1, COS 7,;
% c0s Mgy, 1, COS 7,5

4, = (67]

| €08 My, COS Ny 1
A= —
53y

08 M2, COS M, 1. [68]
08 7,3, COS 7,3, 1

If three orthogonal probes are used, for example, by chosing x, y, and z as the directions
of the three double-sensored probes, then the result can be simplified to

N 2 2
- 1 1 1 1
N ! vxl/ U:Z/ v:J/

Thus the local time-averaged interfacial area can be measured by three interfacial velocity
components. Although in principle this method gives accurate measurements of an interfacial

1/2

(69]

Sensor 1

Figure 5 Three double-sensored probes
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area concentration, there are some problems in terms of practical applications. In deriving
[65] from [61] and [62], it has been assumed that As is small. In view of the effect of
curvature of bubble or droplet interfaces, the accuracy of the measurement increases as As
decreases. On the other hand, [60] indicates that Az, decreases with decreasing As. This
implies that one has to measure smaller At, as As decreases. Then the accuracy of measuring
At, and that of v, decreases as As becomes smaller. Therefore, in practical measurements,
the determination of optimum As should be an important problem which requires utmost
attention.

The above described method based on the three double-sensored probes may be difficult
to apply if the required sensor distance is very small. It is evident that As should be
considerably smaller than a bubble or drop diameter. Furthermore, deformations of inter-
faces by the probes should also be carefully examined. It can be said that this method will
encounter increasing difficulties as the fluid particle size becomes smaller. In view of the
above, a simpler probe method which can be applied to many two-phase conditions is
highly desirable. One possiblity is to use a single double-sensored probe. However, in this
case it becomes necessary to assume certain statistical characteristics of two-phase flow.

Now a double-sensored probe located in the z direction is considered where the mean
flow is assumed to also be in the z direction. The velocity and the normal unit vector of
the jth interface, v, and n;, can be given in terms of unit vectors n,, n,, and n,, using
angles with z and y axes given by (a;,8,) and (u,,v,) and shown in figures 6 and 7. Thus,

v, = v,/{cos a, n, + sin a; cos B, n, + sin «, sin B,n,}, [70]

n,=cos i, n, +sin g, cos v, n, + sin u, sin v, n,.
By assuming that there are no statistical correlations between |v,| and ¢, (randomness of

v,), and in view of [70],
)

J Ivul J

l —_—
vjos ¢

[71]

1 |
% { ; {cos a, cos u, + sin a, sin p, cos (B, - v,)}} (2)

When the number of measured interfaces is large, the summation can be approximated by
an integration. Thus,

L2

where P(a,B,u,v) is a probability density function of a, 8, w, v.

1 —
vjos ¢

. j‘j‘j‘f P(a,B,p,v)da dB dp dv [72]

{cos a cos u + sin a sin p cos (B-v)}’

2» N

>y

+
Figure 6. Angles a; and B; for v,.
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Figure 7. Angles p, and v, for n,

On the other hand, in view of [61] and [62], the measured velocity v associated with
the jth interface passing the double-sensored probe located in the z direction is given by

vakos , = f¥,]cos &, (73]

In view of [73], and assuming that no statistical correlation exists between |v,| and u, 1t
can be shown that

- BB e s

cos @ cos W + sin a s p cos (B-v)}’

where 0 = o, u = w/2and 0 = B, v = 27.

In view of {72], [74], and [41], the time-averaged local interfacial area concentration
is given mn terms of the measured velocities of interfaces and the probability density function.
Hence

a' (xo.p0s 20) = % ‘2 1 /(2)}

J IUSZjl 7

v

J‘ J‘ f J‘ P(a,B,1,v) da dfB du dv

fcos a cos p + sin a sin p cos (B-v)]

x J'J‘fj‘ P(a,B,u,v) cos p da dB du dv

{cos a cos p + sin a sin p cos (B-v)}

[75]

Equation [75] indicates that @’ can be calculated from measured values of the bubble or
droplet number N, and of the passing velocities of interfaces using one double-sensored
probe. However, 1n addition to these 1t 1s necessary to assume a form of the probability
density function P(a,B,u,v). For this purpose, it is assumed that the interfaces are composed
of spherical bubbles or droplets and the probe passes every part of bubble or droplet with
an equal probability. Furthermore, it is assumed that the x and y direction components of
v, are random. Under these assumptions, B and v takes any value between 0 and 2 7 with
equal probability and 8 and v are statistically independent of each other. Then the prob-
ability density function can be reduced to

P(a,B,p,v)da dB dp dv = Pla,pu.(B-v))da dp d(B-v)

gla)sin p cos p da dp d(B-v), [76]

A=
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where g(a) is a probability density function of angle a. By substituting [76] into [75] and
in view of [43], one finally obtains the following result after carrying out the integration:

2L(2)

; el \)

1

14+ 72 g(a) sin a In (1 + cos a)/sin a)da 77
7' gla) cos a da

al (xo’YOJo) = 4N,

Since the main flow is in the z direction, the major component of the interfacial velocity
is also the z component if the mean flow velocity is not small compared with the fluctuating
x and y components. In that case, g(a) is considered to have a sharp peak at a = 0. Hence
as a first approximation, g(a) may be represented by a delta function as

gla) = 8a) . [78]
Then [77] can be simplified to

1
= 4N, o [79]

2ol

The approximation given by [78] implies that the interfacial velocity v, has only the z
component. Equation [79] has also been obtained by Sekoguchi er al. (1974a; 1974b),
Sekoguchi (1982), Herringe et al. (1976), Veteau (1981), and Veteau & Charlot (1981) based
on the bubble diameter distribution assuming spherical bubble.

A more accurate approximation for g(a) may be given by

@ (xg,p0:20) = 4N,

1
gla)=— for0<a < ay,
o [80]

=0 forao<a<%.
This form of g(a) implies that the angle a made by the interfacial velocity and the 2z axis

is random with an equal probability within the maximum angle of a,. Substituting [80]
into [77], the interfacial area concentration becomes

v |21 2)
— J 'vsz;] J
3} (xg:poiZo) = : [81]
1 1 1 !
1- cotzaoln (cos—z- ao) - tani aoln (smi ao)

Therefore, by knowing the value of a,, the time-averaged local interfacial area concentration
can be calculated from the measured values of N, and v,. a, can be estimated from
measured values of statistical parameters of interfacial velocity as explained elsewhere
(Kataoka et al. 1984) (see also the Appendix). It is given by

sin 2a, 1= (¥/fv,])
200 1+ 3(@@F )’ [82]

Thus by knowing the mean value and fluctuations of the z component interfacial velocity,
which are denoted by F:[ and o,, it is possible to estimate the value of a,.

4. EXPERIMENTAL VALUE OF LOCAL INTERFACIAL AREA CONCENTRATION

As shown in the previous section, the time-averaged local interfacial area concentration
can be calculated from measured values of the bubble or droplet number per unit time and
mean and fluctuating components of the interfacial velocity using [81] and [82].
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Serizawa et al. (1974; 1975a; 1975b; 1975¢) have measured the above mentioned pa-
rameters in air—water bubbly and slug flow in a vertical tube of inner diameter of 6 cm
Under stationary and developed conditions, they measured the bubble number per unit
time N, and spectrum of passing velocity of interface v,,| at various radial positions. The
examples of the spectra of [v | are shown in figure 8. From these spectra, one can calculate
the reciprocal of a harmonic mean of v | as

2—1—/ (2)! - LMM di] (83]

s gl [va

1

val

where w(jvz|) 1s the probability density function of |u,| corresponding to the normahzed
spectrum shown in figure 8. Similarly, the square mean o of the fluctuation of v | can
be caiculated from the spectra as

= |2 - | (2]
’ ! [84]
= J;u [val? w(vg) dvg| - p;w lve| w(vg)) divg| »
where
ol = J.” ol ) . 85

The value of o?/fv,P is not measured in Serizawa’s experiment. However, one can approx-
imate this value as

(86]

which is calculated by [84] and [85] from the measured spectrum of [v .| Thus, one obtains
the local interfacial area concentration from [81] and [82] using the measured values of N,
and spectrum of v, Here a, calculated from [82] ranged from 0.17 to 0.39 rad for
Serizawa’s experiments (Serizawa et al. 1974; 1975a; 1975b; 1975¢).

Serizawa et al
Air-Water Bubbly Flow

16=0135m/is  j=1.03 m/s
r/R=098 riR=04
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>

= MR=OB 1R=02
= rR=

2l __/

[ riR=Q7

> riR=01
= riR=06

| AN

° rIR=05 r/R=0
& p

10 20 30 110 20 30

Figure 8 Spectra of ju_| for air—water bubbly flow at jo = 0.135m/sand j; = 103 m/s at
vanous radial positions (Serizawa et al.).
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Figures 9-15 show some examples of the local interfacial area concentration profiles
based on the above-described method and the experimental data of Serizawa et al. (1974;
1975a; 1975b; 1975¢). In the figures, r denotes a radial position and R denotes radius of
flow passage. For bubbly flow the local interfacial area concentration shows rather uniform
values in the center region of the tube and higher values near the tube wall. A similar trend
of interfacial area concentration has been observed by Veteau (1981) and Veteau & Charlot
(1981). The higher values suggest that in this type of bubbly flow the interfacial transport
of momentum and heat is higher near the tube wall. On the other hand, in slug flow and
bubbly to slug transition flows the local interfacial area concentration does not show an
appreciable peak value near the tube wall as indicated in figures 13 and 14. However, higher
values of the interfacial area concentration appear at the central region of the tube. It has
been already shown by Ishii et a/ (1982) and Sekoguchi (1982) that the area-averaged
interfacial area concentration is strongly dependent on two-phase flow regimes. However,
the present study has demonstrated that a transverse profile of the local interfacial area
concentration is also strongly dependent on the flow regimes. These results indicate that
the interfacial transports of mass, momentum, and energy strongly depend on the overall
flow regimes as well as on detailed transverse structures of flow.

Figure 15 shows the radial profiles of various local parameters of two-phase flow along
with the interfacial area concentration. This figure suggests that the turbulent velocity of
the liquid phase &, and the void fraction a are closely related to the local interfacial area
concentration as pointed out by Serizawa (1983) and Herringe et a/. (1976). The near wall
peak of the interfacial area concentration in this particular bubbly flow is matched by the
peak of the void fraction. It is noted that the radial profile of the void fraction in bubbly
flow strongly depends on inlet conditions (Sekoguchi et al. 1974a; 1974b; Sekoguchi 1982).
Thus it is considered that the radial profile of the interfacial area concentration depends
on inlet conditions.

Here the local interfacial area concentration has been calculated from [81] and [82]
using the experimental data obtained from one double-sensored probe. This procedure is
based on several assumptions on statistical characteristics of the interface motion as described
in the previous section, such as the randomness of the interfacial velocity and equilateral
fluctuations of the velocity, etc. These assumptions are considered to be valid in the central
region of bubbly flow. The randomness of bubble behavior in this region is experimentally
supported by Serizawa er al. (1974; 1975a; 1975b; 1975¢c). However, in the very near the
wall region of bubbly flow or slug flow, some of the assumptions are not completely valid.

LN R B N BN B B B
I
300+ Air-Water Bubbly Flow l .
|
° 5 |
~ o}
€ 200F © h o000 b -
< !
o . |
je=0135 m/s |
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1
|
I
ST T R R S N
(1).0 05 0
Wall r/R Center

Figure 9. Radial profile of @} for air—water bubbly flow at j¢ = 0.135 m/s and j; = 0.442 m/s
calculated from the data of Serizawa et al
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Figure 10 Radial profile of E: for air—water bubbly flow at j; = 0.135 m/s and j; = 0.737 m/s
calculated from the data of Serizawa et a/

For slug flow, the applicability of the present method depends on the structure of the liquid
slug section. If the liquid slugs have only a few bubbles, the interfacial area is mainly
determined by the surface area of big slug bubbles. Then the present method may not be
accurate. However, if many small bubbles exist in the liquid slugs, these bubbles significantly
contribute to the interfacial area concentration. For such a case, the present method may
still be applicable. The cases 1n figures 13 and 14 correspond to the second situation.
Furthermore, for two-phase flow where fluid particles cannot be well defined, such as churn-
turbulent flow, the above method may not be appropriate. For these circumstances, more
information on the interfacial velocity is necessary for an accurate measurement of the local
interfacial area concentration. The three double-sensored probe method which is described
in the previous section is suitable for this purpose. Such detailed measurements are strongly
recommended for a better understanding of two-phase flow structures and interfacial trans-
port phenomena.
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Figure 11 Radial profile of a' for air-water bubbly flow at jo = 0135m/sand j, = 103 m/s
calculated from the data of Serizawa er al.
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Figure 12. Radial profile of a; for air-water bubbly flow at j; = 0.268 m/s and j; = 1.03 m/s
calculated from the data of Serizawa er al.

5. CONCLUSIONS

The local instantaneous formulation of the interfacial area concentration has been
introduced based on the concept of a distribution. Using a delta function and the interface
equation, the local instantaneous interfacial area concentration has been defined. Then by
integrating the local instantaneous interfacial area concentration, spatial and time-averaged
interfacial area concentrations have been obtained. For a dispersed two-phase flow the
spatial-(linear-) averaged interfacial area concentration is given in terms of the number of
interfaces per unit length and the harmonic mean of cos 6,, where 8, is the angle between
the normal vector of the jth interface and averaging direction. On the other hand, the time-
averaged interfacial area concentration is given in terms of the number of interfaces per
unit time and the harmonic mean of |v,| cos ¢,, where |v,| is the interfacial velocity of the
Jth surface and ¢, is the angle between v, and the normal vector of jth interface.
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Figure 13 Radial profile of a' for air-water bubble-to-slug-transition flow at j; = 0.268 m/s
and y; = 0737 m/s calculated from the data of Serizawa er al
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Figure 14 Radal profile of a! for air—water siug flow at j; = 0402 m/s and j; = 1.03 m/s
calculated from the data of Senzawa er al

Based on the local instantaneous formulation of the interfacial area concentration,
several ergodic theorems concerning the averaged interfacial area concentration have been
derived. The overall ergodic theorem for the time and spatial averages has been obtained
theoretically. For a stationary and developed two-phase flow, the local ergodic theorem is
obtained. Both theorems are important in terms of practical applications and interpretations
of experimental data.

Based on these theoretical developments, several measurement methods for the inter-
facial area concentration have been proposed and discussed in detail. The method using
three double-sensored probes located in three independent directions has been proposed for
a general application. It is shown that this method enables an accurate measurement of the
local interfacial area concentration. However, it is also pointed out that the required small
size of the whole probe may be an engineering problem.

A much simpler method using one double-sensored probe is also proposed and discussed
in detail. By assuming certain statistical characteristics of the interfacial motion, an expres-
sion for the local interfacial area concentration can be related to measurable quantities from
a double-sensored probe.
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Figure 15 Radial profiles of @, a (void fraction), and i, (turbulent veloaity of hiquid) at
Je = 0.135m/s and j; = 1.03 m/s (Serizawa er al )
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Applying this one-probe method to experimental data, radial profiles of the local
interfacial area concentration have been obtained for air—water bubbly and slug flow. The
local interfacial area concentration has a peak value near the tube wall in the bubbly flow,
while in slug flow it has higher values in the central region of two-phase flow. These results
demonstrated the applicability of the one double-sensored probe method for the measurement
of the local interfacial area concentration.

The formulation of the local interfacial area concentration and measuring methods
developed in this study are basically applicable to any type of two-phase flow. A further
experimental study utilizing these methods for measuring the interfacial area concentration
is highly desirable. Such a detailed measurement of the local quantities of two-phase flow
greatly increases the understanding of interfacial transport phenomena, structures of two-
phase flow, and flow regimes.

Acknowledgments —The authors would like to express their appreciation to Dr. N. Zuber and Mr.
M. Young of NRC for valuable discussions on the subject. A part of this work was performed under
the auspices of the U. S. Nuclear Regulatory Commission.

NOMENCLATURE
a, interfacial area concentration
a,(x) local interfacial area concentration (one dimensional)
a (xyzt) local instantaneous interfacial area concentration
ar spatial averaging of a,(x,3.2,¢)
a” volume averaging of a,(x,y,2,¢)
a” linear (z direction) averaging of a,(x,y,2,?)
a' time averaging of a,(x,y.2,¢)
A(x,y) function of x and y
Ay ~ A, determinant given by [64] and [66]-[68]
B(x,y) function of x and y
(1/cos 8) reciprocal of harmonic mean of cos 6, [30]
COS 74 direction cosines of n,
cos M '
cos 7,
COS M.k direction cosines of n
COS Ty
COS 7
S&pzt) function representing an interface
[yt function representing jth interface
g acceleration due to gravity
gla) probability density function of a
grad / gradient of f(x,y,2,¢)
grad f, gradient of fi(x,y.2,¢)
hy, heat transfer coefficient at interface
H, enthalpy of k phase
Iw.Qn) integration of a,(x,y,z,t) in domain ¥ and Q
L, integration of a,(x,5,2¢) in domain L and
JerJr superficial velocity for gas and liquid
! length scale given by [31], reciprocal of number of interfaces per unit
length
L length in z direction
L, length scale at interface given by [4]
m, mean mass transfer per unit area for k phase
M, interfacial force for k phase
n number

n, unit normal vector of jth interface
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Greek symbols

a

! KATAOKA et al

unit vector tn the direction of probe

unit vector 1n the direction of Xth probe

unit vector n x, y, z directions

number of bubbles or droplets passing a point per unit time
number of bubbles or droplets per unit length

pressure of k& phase

probability density function of a, 8, p, v

probability density function of a, u, (8-v)

mean conduction heat flux of & phase

turbulent heat flux of X phase
interfacial heat flux

radial position

radwus of flow passage

time when average is taken

fixed time

time given by [34]

temperature at interface

bulk temperature of k phase

turbulence velocity of liquid phase
velocity of jth interface

arithmetic means of v, | and v,
reciprocal of harmonic mean of v |
reciprocal of harmonic mean of v, |cos ¢,
x, y, and z components of v,
arithmetic mean of v, v,,, and v,
arithmetic mean of v ?, v, [2, and v, !

velocity of & phase

passing velocity of jth interface through double-sensored probe
passing velocity of jth interface through kth double-sensored probe
passing velocity of jth interface through double-sensored probe n z
direction

reciprocal of harmonic mean of jv |

anthmetic mean of v |

volume

probability density function of |u |

coordinates

fixed point n x, y, and z coordinate

z coordinate given by [22]

axial coordinate

void fraction

volume fraction of & phase

angle between v, and n,

angle given by [80]

angle between n, and projection of v, into x~y plane
constant

mass generation of k phase

delta function

time lag of (jth) interface passing between sensor 1 and 2 of (kth)
double sensored probe

spacing 1n x direction

distance between sensor 1 and 2 of double-sensored probe
angle between n, and n,

angle between n, and n,
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v, angle between n, and projection of v, into x—y plane

3 angle between n, and n,

Px density of k phase

0. O, 0,  root mean square of fluctuating components of v, v,,, v,; and jv |
UIZ

T time scale given by [39], reciprocal of number of interfaces passing a

point per unit time

T, average interfacial shear stress

T average viscous stress for k phase
T, turbulent shear stress for k& phase
¢, angle between n, and v,

o(x) arbitrary function

d, energy dissipation for k phase

0 time duration

Subscripts

L liquid phase

G gas phase

i value at interface

k k phase (gas or liquid)
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APPENDIX

Derivation of [82]
As shown in [70], v, 1s composed of x, y, and z components v, v,,, and v, which
are given by

vy = [V,8in a, sin 8, n,, {Al]
v, = [v,sin a, cos B, n,, [A2]
Vg = Vycos a, n,. [A3])
They should satisfy
Vy = VitV + V. [A4]

If there is no preferred direction for an instantaneous transverse velocity, 3 has a probability
density function h(8) given by

hB) =, 0<B<2m. [A5]
2
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Then in view of [70] with the assumption for g(a) given by [80], one gets

=813

j i [A6]
— r2 2w
=] A gla)sin a daj; h(B)sin B dB.n, = 0.
Similarly,
v, =0. [AT7)
On the other hand,
/2 sm
= |71|f g(a)cos @ da+n, = v/ ao [Ag]

Here no statistical correlations between v, a, and 8 have been assumed.
The mean squares of velocity fluctuations are given by the following expressions. For
the x components
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for the y components

a}s(v,,-v,;)2=yr,|z=%“7|7 %—%9’—’;—?& = o, [A10]
and for the z components,
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On the other hand, from [A4], [A6], and [A7],
WIF = Fal? + W, + V. [A12]
Furthermore, from an assumption that the velocity fluctuations are equilateral,
ol =0l=ol. {A13]
Then combining the above results given by [A9]-[A13] it can be shown that
sin 2a, 1- (o2/fv,]?) (A14]
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